Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 15(1): 68, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36566483

RESUMO

Iron is an essential nutrient required for plant growth and development. The availability of iron might also influence disease resistance in plants. However, the molecular mechanisms involved in the plant response to iron availability and immunity have been investigated separately from each other. In this work, we found that exposure of rice plants to high iron enhances resistance to infection by the fungal pathogen Magnaporthe oryzae, the causal agent of blast disease. RNA-Seq analysis revealed that blast resistance in iron-treated rice plants was associated with superinduction of defense-related genes during pathogen infection, including Pathogenesis-Related genes. The expression level of genes involved in the biosynthesis of phytoalexins, both diterpene phytoalexins and the flavonoid phytoalexin sakuranetin, was also higher in iron-treated plants compared with control plants, which correlated well with increased levels of phytoalexins in these plants during M. oryzae infection. Upon pathogen infection, lipid peroxidation was also higher in iron-treated plants compared with non-treated plants. We also show that M. oryzae infection modulates the expression of genes that play a pivotal role in the maintenance of iron homeostasis. Histochemical analysis of M. oryzae-infected leaves revealed colocalization of iron and reactive oxygen species in cells located in the vicinity of fungal penetration sites (e.g. appressoria) in rice plants that have been exposed to iron. Together these findings support that ferroptosis plays a role in the response of iron-treated rice plants to infection by virulent M. oryzae. Understanding interconnected regulations between iron signaling and immune signaling in rice holds great potential for developing novel strategies to improve blast resistance in rice.

2.
Plant Biotechnol J ; 19(9): 1798-1811, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33780108

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.


Assuntos
Magnaporthe , MicroRNAs , Oryza , Ascomicetos , Elementos de DNA Transponíveis , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Oryza/genética , Doenças das Plantas/genética , Imunidade Vegetal
3.
BMC Plant Biol ; 19(1): 563, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852430

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level in eukaryotes. In rice, MIR7695 expression is regulated by infection with the rice blast fungus Magnaporthe oryzae with subsequent down-regulation of an alternatively spliced transcript of natural resistance-associated macrophage protein 6 (OsNramp6). NRAMP6 functions as an iron transporter in rice. RESULTS: Rice plants grown under high iron supply showed blast resistance, which supports that iron is a factor in controlling blast resistance. During pathogen infection, iron accumulated in the vicinity of M. oryzae appressoria, the sites of pathogen entry, and in cells surrounding infected regions of the rice leaf. Activation-tagged MIR7695 rice plants (MIR7695-Ac) exhibited enhanced iron accumulation and resistance to M. oryzae infection. RNA-seq analysis revealed that blast resistance in MIR7695-Ac plants was associated with strong induction of defense-related genes, including pathogenesis-related and diterpenoid biosynthetic genes. Levels of phytoalexins during pathogen infection were higher in MIR7695-Ac than wild-type plants. Early phytoalexin biosynthetic genes, OsCPS2 and OsCPS4, were also highly upregulated in wild-type rice plants grown under high iron supply. CONCLUSIONS: Our data support a positive role of miR7695 in regulating rice immunity that further underpin links between defense and iron signaling in rice. These findings provides a basis to better understand regulatory mechanisms involved in rice immunity in which miR7695 participates which has a great potential for the development of strategies to improve blast resistance in rice.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , RNA de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Plantas/metabolismo
4.
Mol Plant Microbe Interact ; 30(5): 385-398, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28430017

RESUMO

Metal ions are essential elements for all living organisms. However, metals can be toxic when present in excess. In plants, metal homeostasis is partly achieved through the function of metal transporters, including the diverse natural resistance-associated macrophage proteins (NRAMP). Among them, the OsNramp6 gene encodes a previously uncharacterized member of the rice NRAMP family that undergoes alternative splicing to produce different NRAMP6 proteins. In this work, we determined the metal transport activity and biological role of the full-length and the shortest NRAMP6 proteins (l-NRAMP6 and s-NRAMP6, respectively). Both l-NRAMP6 and s-NRAMP6 are plasma membrane-localized proteins that function as iron and manganese transporters. The expression of l-Nramp6 and s-Nramp6 is regulated during infection with the fungal pathogen Magnaporthe oryzae, albeit with different kinetics. Rice plants grown under high iron supply show stronger induction of rice defense genes and enhanced resistance to M. oryzae infection. Also, loss of function of OsNramp6 results in enhanced resistance to M. oryzae, supporting the idea that OsNramp6 negatively regulates rice immunity. Furthermore, nramp6 plants showed reduced biomass, pointing to a role of OsNramp6 in plant growth. A better understanding of OsNramp6-mediated mechanisms underlying disease resistance in rice will help in developing appropriate strategies for crop protection.


Assuntos
Resistência à Doença , Ferro/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Biomassa , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Teste de Complementação Genética , Magnaporthe/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutação/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...